

A Comparison of Oxygen Supply Systems for Combustion Applications

J Sirman, B.A. vanHassel, L. Switzer, G.M. Christie

Fourth Annual Conference on Carbon Capture & Sequestration May 2-5, 2005

Presentation Outline

- Oxygen Supply Systems
- **&** Economic Comparisons
- * Summary

Oxygen Supply Systems

- * Air
- Cryogenic Separation
 - Most mature technology
 - Substantial savings on scale up
- * VPSA
 - **Lowest cost source of oxygen @ < 200 tpd**
- Ceramic Membranes
 - High purity oxygen
 - **Requires significant air compression**
- Advanced OTM integrated boiler

Comparison of Oxygen Supply Systems

CO₂ Capture and Sequestration

Bonor dapadity [iviivibta/iii]

Based on EPA Boiler Inventory database

Economic Comparisons

	Air fired Boiler	VPSA Boiler	Cryo Boiler	Ceramic membrane boiler	Advanced OTM boiler
Capital Cost (\$MM)					
Boiler	1.9	1.9	1.9	1.9	2.9
Annualized capital cost	0.32	0.32	0.32	0.32	0.5
Operating Costs (\$MM)					
Annual Fuel @\$5/MMBTU	5.9	5.3	5.3	5.3	5.3
Annual Power @ \$0.07/kWh	0.02	0.01	0.01	0.01	0.3
Annual Cost of Oxygen		2.1	3	6.2	
Total Operating Costs	5.9	7.4	8.3	11.5	5.6
Combined annual Cost (\$MM)	6.2	7.7	8.6	11.8	6.1

- 100,000 lb/hr steam
 - $\sim 250 \text{ tpd/O}_2$
- ***** Lowest cost of oxygen from VPSA
 - * Cost of oxygen prohibitive

Economic Comparisons

	Air fired Boiler	VPSA Boiler	Cryo Boiler	Ceramic membrane boiler	Advanced OTM boiler
Capital Cost (\$MM)					
Boiler	6.0	6.0	6.0	6.0	9.0
Annualized capital cost	1.0	1.0	1.0	1.0	1.54
Operating Costs (\$MM)					
Annual Fuel @\$5/MMBTU	29.3	26.3	26.3	26.3	26.3
Annual Power @ \$0.045/kWh	0.053	0.03	0.028	0.028	1.5
Annual Cost of Oxygen		10.5	9.6	14.1	
Total Operating Costs	29.4	36.8	35.9	40.5	27.8
Combined annual Cost (\$MM)	30.4	37.8	36.9	41.5	29.3

- * 500,000 lb/hr steam
 - **❖** ~1250 tpd/O₂
- Lowest cost oxygen from Cryo
 - Cost prohibitive

Economics under Carbon Constraint

	Air fired Boiler	VPSA Boiler	Cryo Boiler	Advanced OTM boiler
Capital Cost (\$MM)				
Boiler	1.9	1.9	1.9	2.9
CO2 capture system	5.9	1.9	1.9	1.9
Total Capital Cost	7.8	3.8	3.8	4.8
Annualized capital cost	1.3	0.65	0.65	0.82
Operating Costs (\$MM)				
Annual Fuel @\$5/MMBTU	5.9	5.3	5.3	5.3
Annual Power @ \$0.07/kWh	0.02	0.01	0.01	0.3
Annual Cost of Oxygen		1.7	2.4	
Total Operating Costs	5.9	6.9	7.7	5.6
CO2 Capture costs (\$MM)				
Annual Steam @ \$3.5/MMBTU	1.1			
Annual Power @ \$0.07/kWh	0.4	0.78	0.77	0.77
Annual Chemicals	0.29			
Total CO2 Capture Costs	1.8	0.78	0.77	0.77
Combined annual Cost (\$MM)	9.0	8.4	9.1	7.2

100,000 lb/hr steam

- **❖** VPSA oxygen results in net CO₂ cost of ~\$25/ton
- **Advanced OTM results in net CO₂ cost ~\$5/ton**

Economics under Carbon Constraint

	Air fired			Advanced
	Boiler	VPSA Boiler	Cryo Boiler	OTM boiler
Capital Cost (\$MM)				
Boiler	6.0	6.0	6.0	9.0
CO2 capture system	30.5	6.0	6.0	6.0
Total Capital Cost	36.5	12.0	12.0	15.0
Annualized capital cost	6.2	2	2.1	2.6
Operating Costs (\$MM)				
Annual Fuel @\$5/MMBTU	29.3	26.3	26.3	26.3
Annual Power @ \$0.045/kWh	0.05	0.03	0.03	1.5
Annual Cost of Oxygen		10.5	9.6	
Total Operating Costs	29.4	36.8	35.9	27.8
CO2 Capture costs (\$MM)				
Annual Steam @ \$5/MMBTU	5.9			
Annual Power @ \$0.045/kWh	2.1	0.77	0.77	0.77
Annual Chemicals	1.5			
Total CO2 Capture Costs	9.5	0.77	0.77	0.77
Combined annual Cost (\$MM)	45.0	39.6	38.7	31.1

500,000 lb/hr steam

- Cryo oxygen results in net CO₂ cost of <\$20/ton</p>
- **Advanced OTM results in net CO₂ cost ~\$4/ton**

Summary

- Oxygen supply systems add substantial cost to conventional boiler
 - ***** Efficiency savings offset by cost of oxygen
- * "Conventional" ceramic membrane technology does not offer advantage over existing oxygen supply systems
- Advanced OTM combustion has potential for significant cost reduction
- **CO₂** capture <\$20/ton possible with current technology
- **❖** Advanced OTM combustion can lower to <\$5/ton CO₂

Any Questions?

Visit us at: www.praxair.com

This presentation was written with support of the U.S. Department of Energy under Contract No. DE-fc26-01NT41147. The Government reserves for itself and others acting on its behalf a royalty-free, nonexclusive, irrevocable, worldwide license for Governmental purposes to publish, distribute, translate, duplicate, exhibit and perform this copyrighted presentation.

